基于四倍频矢量信号和波长重用的双向光载无线系统

庄云圣*,潘炜,叶佳,李沛轩,唐堂,邹喜华

西南交通大学信息光子与通信研究中心,四川成都 610031

摘要为提高光载无线(RoF)系统传输容量,提出了一种基于四倍频矢量信号生成及波长重用技术的双向 RoF 传输系统。该系统中,下行链路由基于受激布里渊散射效应的窄带光带阻滤波器和 Sagnac 环在光域实现四倍频矢量信号调制;在基站端,未调制的边带由检偏器滤出作为上行链路光载波实现波长重用。传输实验验证了 24 GHz 的四倍频正交相移键控(QPSK)信号的拍频产生,并测试了码率为400 Mbit/s的 8 GHz 下行频带 QPSK 和 400 Mbit/s的上行基带开关键控(OOK)信号的 6.15 km 光纤传输。实验结果验证了该系统的可行性。 关键词 光通信;射频光子技术;光载无线通信;波长重用;矢量信号;四倍频 中图分类号 TN929.11 文献标识码 A doi: 10.3788/CJL201845.1006005

Bidirectional Radio over Fiber System Based on Frequency-Quadrupled Vector Signal and Wavelength Reuse

Zhuang Yunsheng*, Pan Wei, Ye Jia, Li Peixuan, Tang Tang, Zou Xihua

Center for Information Photonics and Communications, Southwest Jiaotong University,

Chengdu, Sichuan 610031, China

Abstract In order to improve the transmission capacity of the radio over fiber (RoF) system, a bidirectional RoF transmission system is proposed based on the generation of frequency-quadrupled vector signal and wavelength reuse technique. For the downlink transmission, a stimulated Brillouin scattering-assisted narrow-band optical notch filter and a Sagnac loop are employed to generate a frequency-quadrupled vector signal directly in optical domain. At the base station, the unmodulated sideband of the downlink signal is filtered out by a polarizer and reused as the uplink optical carrier to achieve wavelength reuse. In the experiment, a quadrature phase shift keying (QPSK) signal centered at 24 GHz is generated by frequency beating. A 400 Mbit/s downlink QPSK signal at 8 GHz and a 400 Mbit/s baseband on-off keying (OOK) signal as uplink are used to evaluate the system performance over a 6.15 km fiber link. The feasibility of the proposed system is confirmed by the experimental result.

Key words optical communications; radio frequency photonics; radio-over-fiber communication; wavelength reuse; vector signal; quadrupling frequency

OCIS codes 060.5625; 060.2360; 350.4010; 060.2330

1 引 言

随着宽带无线接入网络对传输容量的要求越来 越高,为实现信号的高速传输,高载频的通信系统是 今后发展的必然趋势。光载无线(RoF)通信技术因 具有低传输损耗、抗电磁干扰和固有的大带宽等特 性受到学术界的广泛关注^[1-2],传输频率甚至可达 毫米波段^[3-4]。在高频信号产生领域,基于外调制法 的光生微波技术可利用低频的本振(LO)信号为 RoF 传输系统提供高频微波载波,简单高效^[4-10]。 其中,光载波抑制(OCS)技术可拍频生成二倍频微 波信号^[4-6],而2阶边带OCS技术则可同时抑制载 波和1阶边带,产生四倍频信号^[7-10]。双平行马赫-曾德尔调制器(DPMZM)^[7]和双驱动马赫-曾德尔 调制器(DEMZM)^[8-9]均可实现四倍频,但由于其偏 置电压或调制指数控制困难,实现难度较大;基于级

* E-mail: yunshengzhuang@163.com

收稿日期: 2018-03-22; 修回日期: 2018-05-08; 录用日期: 2018-05-22

基金项目:国家 863 计划(2015AA016903)、国家自然科学基金(61775185,61405165)、四川省国际科技合作重点项目 (2018HH0002)

联 MZM 的方法则会使系统结构更加复杂^[10]。光 纤布拉格光栅(FBG)等光滤波器虽然可直接滤除载 波,但可调谐性差^[11]。联合使用设置在最大传输点 (MATP)的 MZM 和基于受激布里渊散射(SBS)效 应的可调谐窄带光滤波器,能够简便地产生用于 RoF 传输的四倍频信号^[12-13]。

倍频矢量信号或混合频相调制技术均可进一步 提高 RoF 系统的传输效率^[14-17]。但当两个用于拍频 的边带同时被矢量信号调制时,4 倍拍频过程同样会 引入 4 倍相位,因此必须考虑预编码问题^[15-16]。2015 年,Li 等^[18]将两个 2 阶边带设置为正交偏振态并进 入 Sangac 环,通过在环中放置调制器,使仅沿调制器 正向传输且偏振态与主轴一致的边带被调制,避免了 复杂的预编码过程。同时还避免了外界环境对边带 相位差的影响和色散引入的功率衰落^[18-19]。

为满足宽带多业务网络的接入需求并节约系统 资源,基于无色化基站设计的双向传输系统是今后 发展的趋势。常见的方法是利用反射式半导体光放 大器^[20]、光栅等光滤波器^[21]或偏振相关结构^[22-23] 等实现波长重利用,接收端基站不再需要光源。其 中,使用检偏器最经济,且可调谐性能突出,是一种 易于实现的高效重用方案。文献[18-19]中的光谱 结构均存在仅为了拍频而空载的边带,造成频带资 源的浪费和传输效率的降低。

基于以上分析,提出了一种基于四倍频矢量信 号生成和波长重用技术的双向 RoF 传输系统,并进 行了信号产生与传输实验。相比传统结构,通过对 边带的偏振态处理,该方案能增加上行链路,提高传 输效率。实验结果验证了该方案的可行性。

2 系统设计与理论分析

基于四倍频矢量信号生成与波长重用技术的双向 RoF 传输系统原理如图 1 所示。图中 CO 为中 心站,BS 为基站,LD 为激光二极管,EDFA 为掺铒 光纤放大器,PC 为偏振控制器,cir 为光环形器, OVA 为可调光衰减器,PM-FBG 为保偏光栅,PBS 为偏振分束器,OC 为光耦合器,pol 为检偏器,PD 为光电探测器,OSC 为高速实时示波器。

CO: central office; LD: laser diode; LO: local oscillator; EDFA: erbium doped fiber amplifier; cir: circulator; PC: polarization controller; OVA: optical variable attenuator; PBS: polarization beam splitter; pol: polarizer; PM-FBG: polarization-maintain fiber Bragg grating; PD: photodetector; OSC: oscilloscope; BS: base station

图 1 基于四倍频矢量信号生成与波长重用技术的双向 RoF 系统图

Fig. 1 Bidirectional RoF system based on frequency-quadrupled vector signal generation and wavelength reuse technology

以激光二极管产生的连续光为光载波,由本振 信号调制,MZM1位于最大传输点,产生包括光载 波在内的偶数阶边带。在小信号调制模式下,可忽 略2阶以上的边带。MZM1输出光谱如图1节 点 A所示。图中反馈结构为基于 SBS 效应的窄带 光滤波器。经 EDFA1 放大光功率后,在该结构中, 若仅光载波的功率高于 SBS 阈值,而两个边带的功 率低于 SBS 阈值,则仅有光载波产生与传播方向相 (1)

反的斯托克斯光。斯托克斯光与光载波的相互作用 进一步加强了后向散射过程,导致光载波的能量向 斯托克斯光转移,于是光载波被抑制,仅剩两个2阶 边带^[12]。节点 B 的光信号可以表示为

$$- J_2(m) E_0 \{ \exp[j(\omega_0 + 2\omega_{\rm LO})t] + \exp[j(\omega_0 - 2\omega_{\rm LO})t] \},$$

式中: E_{\circ} 为原始光信号的电场强度: ω_{\circ} 为光载波角 频率; $ω_{LO}$ 为本振信号角频率, t 为时间变量; $m = \pi V_{\rm RF} / V_{\pi}$ 为调制指数, $V_{\rm RF}$ 为本振信号的振幅, V_π为调制器的半波电压; J₂为2阶贝塞尔函数系 数。经窄带滤波的光信号被输入到 PM-FBG 中。 PM-FBG是利用保偏光纤制作的光纤光栅,拥有一 对偏振态正交的主轴,且对不同的输入偏振态有不 同的频率响应特性。PM-FBG 传输谱如图 2 所示。 PC2 可调整两个边带的偏振态,使其与 PM-FBG 的 一对正交主轴均成 45°,故两个偏振态上都存在一 对2阶边带。合理设置载波波长和本振频率,可使 两个边带恰好位于不同偏振态传输谱的阻带中,于 是每个偏振态上可各保留一个边带。PC3 可调整两 个正交边带的偏振态,使其恰好分别与 PBS 的两个 主轴一致。因此,PBS的两臂分别得到如节点C和 节点 D 所示的光信号。EDFA2 可补偿滤波后整体 信号的功率损耗。

图 2 FMFFDG 按搁 盾

Fig. 2 Transmission spectrum of PM-FBG

在 Sagnac 环内, PC4 可将沿逆时针方向传播的 边带的偏振态调整到与环内 MZM2 的主轴方向一 致,因此仅有该边带被正交相移编码(QPSK)矢量 信号调制。两个偏振态正交的光信号可表示为

$$\begin{bmatrix} E_{x} \\ E_{y} \end{bmatrix} = -J_{2}(m)E_{0} \times \begin{bmatrix} \exp[j(\omega_{0} + 2\omega_{LO})t] \times IM[S_{QPSK}(t)] \\ \exp[j(\omega_{0} - 2\omega_{LO})t] \end{bmatrix}, \quad (2)$$

式中: E_x 为垂直偏振态上的光场分量; E_y 为水平偏振态上的光场分量; $S_{\text{QPSK}}(t)$ 为 QPSK 格式的矢量

信号;IM[•]用于表征强度调制,且符合

$$\operatorname{IM}[S_{\operatorname{QPSK}}(t)] =$$

 $\exp[jS_{QPSK}(t) + \theta] + \exp[-jS_{QPSK}(t)],$ (3) 其中 θ 为 MZM2 内部两个光路分支的固有相位差。

从 Sagnac 环出来的光信号被 EDFA3 放大功 率后,由 6.15 km 的单模光纤 (SMF)传输到达接收 端基站。在接收端基站,光信号首先被耦合器分为 两路。上行链路用于下行信号的拍频与解调;下行 链路用于实现波长重用,被上行信号调制。PC6 将 一对正交的边带的偏振方向调整到恰好均与检偏器 主轴成 45°,以便于 PD 直接拍频,如节点 E 所示。 PD 输出的光电流可以表示为

 $i(t) \propto \mathrm{J}_{2}^{2}(m) E_{0}^{2} \cos(4\omega_{\mathrm{LO}}t) \times \mathrm{IM}[S_{\mathrm{QPSK}}(t)].$

(4)

假设 QPSK 信号是频率为ω 的频带信号,则最终上 变频后的两个信号主瓣将分别位于 4ω_{L0}+ω 和 4ω_{L0}-ω处。在接收端的另一条光路中,PC7 可同 时调整两个边带的偏振态,使未调制信号的上边带 恰好对准 pol2 的主轴。因此,pol2 输出端仅有一个 空载的边带被滤出。该边带由基带 OOK 信号完成 光调制后被作为上行信号传回中心站。

3 实验结果

基于四倍频矢量信号生成与波长重用技术的双 向光载无线传输实验分为两阶段进行。首先验证基 于 SBS 效应的四倍频矢量信号生成的有效性,之后 将四倍频技术应用于实际传输链路,构建双向光载 无线系统。实验过程及结果详述如下。

3.1 基于 SBS 效应的四倍频矢量信号的产生

在四倍频信号生成与调制实验中,激光器产生 波长为 1551.16 nm 的连续光信号,输出功率 10 dBm。微波源(Anritsu MG3694C)产生 6 GHz 的本振信号,用于生成四倍频信号。控制 MZM1 处 于最大传输点产生偶阶边带,调节 EDFA1 与 OVA 以控制光信号功率,使基于 SBS 自滤波效应的窄带 滤波器抑制载波,从而使一对 2 阶边带从 cir2 的 端口 3 输出。图 3 是由光谱分析仪(Anritsu MS9740A)观测节点 B 的光谱图,其中边带与载波 的抑制比达 18.9 dB。两个 2 阶边带间的波长间隔 为0.192 nm,恰好对应电域频率的 24 GHz 微波信 号。将该光信号接入 PD 拍频,用电谱分析仪 (Anritsu MS2840A)测量该节点功率谱,其结果如 图 4 所示。24 GHz 的四倍频信号功率与其他杂波 功率的抑制比均超过 20 dB。至此,用于拍频产生

Fig. 3 Optical spectrum of the 2nd-order sideband 四倍频微波信号的两个 2 阶边带在光域上生成。

在 PC2、PC3 和 PM-FBG 的共同作用下,两个 边带被成功地调整到相互正交的偏振态上,并通过 PBS 与环形器,构成 Sagnac 环形结构。EDFA2 调 整偏振态后光信号功率放大18 dB,为偏振态选择和 Sagnac 环内信号调制与处理提供功率补偿。上、下 两个边带分别沿顺时针、逆时针方向从 MZM2 的 输出端口和输入端口进入,PC4和PC5同时调整其

图 4 四倍频信号电谱图

Fig. 4 Electrical spectrum of the quadrupled-frequency signal
在 Sagnac 环中的偏振态。任意波形发生器
(KEYSIGHT M9502A)产生 800 MHz 的频带
QPSK 信号作为矢量信号源,码率为 400 Mbit/s。

该矢量信号通过 MZM2 的射频段端口进入,在 沿着逆时针方向传输的下边带上实现双边带(DSB) 调制。用光谱仪分别测量 C、D 两节点的频域图像, 如图 5(a)、(b)所示。在各自的偏振态上,边带本身 与另一边带的抑制比均超过 20 dB。

图 5 Sagnac 环中 PBS 两路分支中的光谱图。(a)调制了矢量信号的下边带;(b)未调制矢量信号的上边带 Fig. 5 Optical spectra of the two branches of the PBS in Sagnac loop. (a) Lower sideband modulated by vector signal; (b) upper un-modulated sideband

EDFA3 将实现调制与处理后的光信号再次放大 18 dB,以便进行 6.15 km 的光纤传输。在接收端基 站,PC6 和 poll 将两个边带偏振态统一后,PD 可直 接进行光电转换,生成基于矢量信号调制的4 倍频微 波信号。而另一光路上,空载的上边带被 PC7 和 pol2 滤出后进入 MZM3,由任意波形发生器产生码率为 400 Mbit/s 的基带 OOK 信号进行光调制,并经由等 长光纤实现上行链路传输,返回中心站。图 6(a)、(b) 分别对应节点 E 和 F 的光谱图。其中,图 6(a)是携 带数据的下边带和空载的上边带调整到同一偏振态 后的情况,图 6(b)为基站内经 pol2 后即将进行波长 重用与上行调制的上边带,波长值为 1551.24 nm。

基站 PD1 拍频得到的电谱图如图 7 所示。综合图 6(a)、(b)与图 7(a)可知,电矢量信号能够顺利

调制到下边带光信号上,且在基站端通过拍频得到 了基于四倍频产生的 24 GHz 的 QPSK 信号。其带 宽与 QPSK 符号速率一致,均为 200 MHz。

3.2 基于双向 RoF 系统的传输性能测试

为进一步验证 RoF 系统的实际传输效果,采用 高速实时示波器(LeCroy WaveMaster-813Zi, 40 GS/s,13 GHz)测量下行 QPSK 信号和上行 OOK 信号在该系统中的传输性能。受示波器带宽 与采样率的限制,考虑到信号的实际采样效果和误 码率(BER, R_{EE})曲线的准确性,传输实验适当降低 了载波频率,采用 8 GHz 微波载波进行系统功能性 验证。图 7(b)为接收端下行链路拍频得到的电谱 图。此时,矢量信号在 Sagnac 环中调制在8 GHz的 载波上,QPSK 信号码率仍保持400 Mbit/s。

图 6 基站端光谱图。(a)用于下行链路的两个边带;(b)用于上行链路的未调制边带

Fig. 6 Optical spectra at the BS. (a) Both sidebands used for downlink; (b) unmodulated sideband prepared for uplink

图 7 下行链路拍频得到 QPSK 信号电谱图。(a) 24 GHz 载波;(b) 8 GHz 载波 Fig. 7 Electrical spectra of QPSK signal obtained by the downlink frequency beating. (a) Loaded at 24 GHz; (b) loaded at 8 GHz

离线处理示波器采集的实时数据得到了误码率 曲线、星座图及眼图,并测量了上下行链路的背靠背 (BTB)和 6.15 km 光纤传输情况,两路同时存在,测 量结果同步。根据实验结果绘制的误码率如 图 8(a)、(b)所示,分别为下行 QPSK 信号和上行 OOK 信号的传输误码率曲线。当下行信号在接收 光功率达到-4 dBm 时,两种传输距离的误码率均 达到 10⁻⁵数量级,差别很小。图 8(a)给出了几个特 殊接收功率下的星座图。接收功率较高时,两种情 况的星座图都清晰可辨,上行链路 OOK 信号的误 码率曲线及眼图效果如图 8(b)所示。从眼图效果 可知,不同距离下,基带 OOK 信号的传输与解调能 较好地保证通信质量。误码率曲线的相似程度表 明,在该实验条件下,距离并不是影响性能的主要 因素。

与下行信号相比,作为上行链路光载波的上边 带,从中心站发出后因偏振态调整而损失的功率小 于下行链路,且调制信号格式相对简单,因此上行链 路无需达到与下行链路相近的接收功率值即可实现 相近的误码率水平。同时,误码性能也与实验中采 用的调制器与探测器效率相关。在实验中,实现波 长重用的光边带经过了双向传输,但链路中 EDFA

图 8 背靠背与 6.15 km 传输 BER 曲线、眼图和星座图。(a)下行链路 QPSK 调制;(b)上行链路 OOK 调制 Fig. 8 BER curves, eye diagrams and constellation diagrams of the BTB and 6.15 km performance. (a) Downlink with QPSK modulation; (b) uplink with OOK modulation

有功率放大效果,且上行链路的调制与解调效率高, 所以即使存在光功率衰减,其仍具有较好的误码性 能。如图 8(b)所示,接收光功率为-21 dBm 时,上 行误码率位于 10⁻⁵数量级,不需要额外补偿功率, 可容忍超过 15 dB 的光功率损耗。

实验中限制下行四倍频信号产生的关键因素是 PM-FBG 的滤波特性。当传输采用的本振频率较 低时,光栅的频率响应不够陡峭,可能会干扰滤波性 能,从而影响 Sagnac 环内四倍频矢量信号的产生。 但由图 7(b)可见,信号仍然被较好地调制到 8 GHz 的载波上,并且可以达到 10⁻⁵的误码水平,系统功 能并未受到影响。因而,本文提出的方案推广到 24 GHz等更高频段及采用频带更高的矢量信号进 行调制,系统同样具备可行性。同时,该双向 RoF 系统在设计上仅采用最常见的基本光学器件,经济 便捷。

5 结 论

提出了一种基于 SBS 效应的四倍频矢量信号 产生和波长重用技术的双向 RoF 传输系统,并进行 了实验验证。实验结果表明,可由基于 SBS 效应的 光窄带滤波器与 Sagnac 环实现四倍频矢量信号调 制,验证了 24 GHz 的 QPSK 信号产生。同时,该系 统可完整地实现上下行信号的同步传输。传输测试 表明,8 GHz 的下行矢量信号在一4 dBm 的接收功 率下,误码率可达到 10⁻⁵数量级,上行基带 OOK 信 号实现该误码水平仅需一21 dBm 的接收功率,证实 了方案的可行性。该方案将四倍频生成与 Sagnac 环内的矢量信号调制结合,并实现波长重用,提升了 系统的传输频率和双向通信的简便性,具有一定的 经济优势。

参考文献

- Yao J P. Microwave photonics [J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
- [2] Gowda A S, Dhaini A R, Kazovsky L G, et al. Towards green optical/wireless in-building networks: radio-over-fiber [J]. Journal of Lightwave Technology, 2014, 32(20): 3545-3556.
- [3] Liu L, Xu T F, Dai Z X, et al. Research progress on optical millimeter-wave generation based on four-wave mixing[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050001.
 刘丽,徐铁峰,戴振祥,等.四波混频光生毫米波技术研究进展[J].激光与光电子学进展, 2016, 53 (5): 050001.

- [4] Dong Z, Cao Z Z, Chen L, et al. Experimental research on a radio-over-fiber system based on 60 GHz millimeter-wave [J]. Chinese Journal of Lasers, 2010, 37(4): 1018-1021.
 董泽,曹子峥,陈林,等.基于 60 GHz 光毫米波的 光纤无线传输系统实验研究[J].中国激光, 2010, 37(4): 1018-1021.
- [5] Shao T, Yao J P. Millimeter-wave and UWB over a colorless WDM-PON based on polarization multiplexing using a polarization modulator [J]. Journal of Lightwave Technology, 2013, 31 (16): 2742-2751.
- Xu Y M, Zhang Z R, Li X Y, et al. Demonstration of 60 Gb/s W-band optical mm-wave signal fullduplex transmission over fiber-wireless-fiber network
 IEEE Communications Letters, 2014, 18(12): 2105-2108.
- [7] Lin C T, Shih P T, Chen J, et al. Optical millimeter-wave up-conversion employing frequency quadrupling without optical filtering [J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(8): 2084-2092.
- [8] Ma J X, Zhou M, Zhan Y, et al. A novel ROF link scheme with frequency quadrupling optical millimeter-wave carrying dual-stream of 10 Gbit/s 16-QAM signals [J]. Optics & Laser Technology, 2013, 46: 81-87.
- [9] Lin R J, Chen X, Zhang L, et al. Design of mm-RoF system based on OFM technique with optimized OFDM modulation [J]. Chinese Journal of Lasers, 2012, 39(8): 0805007.
- [10] Chen L X, Lu J, Dong Z, et al. A radio over fiber system based on two external modulator for optical millimeter generation with photonic frequency quadruple[J]. Chinese Journal of Lasers, 2008, 35 (12): 1910-1913.
 陈罗湘, 卢嘉, 董泽, 等. 采用两个级联外部调制器 产生四倍频光载毫米波的光纤无线通信系统[J]. 中国激光, 2008, 35(12): 1910-1913.
- [11] Li Z, Li M, Chi H, et al. Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(12): 694-696.
- Wang W T, Wang Q, Sun W H, et al. Frequencyquadrupling microwave signal generation based on Brillouin-assisted optical notch filter [C] // International Symposium on Next-Generation Electronics (ISNE), May 4-6, 2015, Taipei, Taiwan. New York: IEEE, 2015: 15240780.

- Li P X, Pan W, Zou X H, et al. Flexible microwave signal generation with frequency multiplication based on tunable OEO and SBS-assisted notch filter [C] // 14th International Conference on Optical Communications and Networks (ICOCN), July 3-5, 2015, Nanjing, China. New York: IEEE, 2015: 15382410.
- [14] Zou W G, Wang X, Xiao J N, et al. Optimization of 60 GHz orthogonal frequency division multiplexing radio-over-fiber system based on training sequence
 [J]. Chinese Journal of Lasers, 2011, 38 (5): 0505010.

邹伟刚, 王鑫, 肖江南, 等. 基于训练序列进行系统 优化的 60 GHz 正交频分复用-光载无线通信系统 [J]. 中国激光, 2011, 38(5): 0505010.

- [15] Xiao J N, Zhang Z R, Li X Y, et al. OFDM vector signal generation based on optical carrier suppression
 [J]. IEEE Photonics Technology Letters, 2015, 27 (23): 2449-2452.
- [16] Jiang W J, Lin C T, Huang H S, et al. 60-GHz photonic vector signal generation employing frequency quadrupling scheme for radio-over-fiber link [C] // 2009 Conference on Optical Fiber Communication, March 22-26, 2009, San Diego, CA, USA. New York: IEEE, 2009: 10689514.
- [17] Ye J, Yan L S, Pan W, et al. Generation of hybrid frequency and phase shift keying signal for radio over fiber system[J]. Acta Optica Sinica, 2018, 38(2): 0206002.

叶佳,闫连山,潘炜,等.面向光载无线系统的混合 频相调制信号产生[J].光学学报,2018,38(2):

0206002.

- Li R M, Li W Z, Chen X F, et al. Millimeter-wave vector signal generation based on a bi-directional use of a polarization modulator in a Sagnac loop [J]. Journal of Lightwave Technology, 2015, 33(1): 251-257.
- [19] Li R M, Han X, Chen X F, et al. Vector signal generation using a polarization and a phase modulator in a Sagnac loop [J]. IEEE Photonics Technology Letters, 2015, 27(18): 1961-1964.
- [20] Won Y Y, Kim H S, Son Y H, et al. Full colorless WDM-radio over fiber access network supporting simultaneous transmission of millimeter-wave band and baseband gigabit signals by sideband routing[J]. Journal of Lightwave Technology, 2010, 28 (16): 2213-2218.
- [21] Gao C, Huang S G, Xiao J H, et al. Compensation of chromatic dispersion for full-duplex ROF link with vector signal transmission using an optical phase shifter[J]. Chinese Optics Letters, 2015, 13(1): 010604.
- [22] Lu H H, Li C Y, Chen H W, et al. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme [J]. Optics Express, 2016, 24(15): 17250-17258.
- [23] Zhu B B, Pan S L, Zhu D, et al. Wavelength reuse in a bidirectional radio-over-fiber link based on crossgain and cross-polarization modulation in a semiconductor optical amplifier [J]. Optics Letters, 2013, 38(18): 3496-3498.